
Performance Results on the Intel Touchstone Gamma Prototype

D. H. Bailey, E. Barszcz, R. A. Fatoohi, H. D. Simon and S. Weeratunga
NAS Applied Research Office
NASA Ames Research Center

Abstract
This paper describes the Intel Touchstone

Gamma Prototype, a distributed memory MIMD
parallel computer based on the new Intel i860 float-
ing point processor. With 128 nodes, this system
has a theoretical peak performance of over seven
GFLOPS. This paper presents some initial perfor-
mance results on this system, including results for
individual node computation, message passing and
complete applications using multiple nodes. The
highest rate achieved on a multiprocessor Fortran
application program is 844 MFLOPS.

Overview of the Touchstone Gamma System
In spring of 1989 DARPA and Intel Scien-

tific Computers announced the Touchstone project.
This project calls for the development of a series of
prototype machines by Intel Scientific Computers,
based on hardware and software technologies being
developed by Intel in collaboration with research
teams at CalTech, MIT, UC Berkeley, Princeton,
and the University of Illinois. The eventual goal of
this project is the Sigma prototype, a 150 GFLOPS
peak parallel supercomputer, with 2000 processing
nodes. One of the milestones towards the Sigma
prototype is the Gamma prototype. At the end of
December 1989, the Numerical Aerodynamic Sim-
ulation (NAS) Systems Division at NASA Ames
Research Center took delivery of one of the first
two Touchstone Gamma systems, and it became
available for testing in January 1990.

The Touchstone Gamma system is based on the
new 64 bit i860 microprocessor by Intel [4]. The
i860 has over 1 million transistors and runs at 40
MHz (the initial Touchstone Gamma systems were
delivered with 33 MHz processors, but these have
since been upgraded to 40 MHz). The theoretical
peak speed is 80 MFLOPS in 32 bit floating point
and 60 MFLOPS for 64 bit floating point opera-

tions. The i860 features 32 integer address regis-
ters, with 32 bits each, and 16 floating point regis-
ters with 64 bits each (or 32 floating point registers
with 32 bits each). It also features an 8 kilobyte on-
chip data cache and a 4 kilobyte instruction cache.
There is a 128 bit data path between cache and reg-
isters. There is a 64 bit data path between main
memory and registers.

The i860 has a number of advanced features to fa-
cilitate high execution rates. First of all, a number
of important operations, including floating point
add, multiply and fetch from main memory, are
pipelined operations. This means that they are
segmented into three stages, and in most cases a
new operation can be initiated every 25 nanosec-
ond clock period. Another advanced feature is the
fact that multiple instructions can be executed in a
single clock period. For example, a memory fetch,
a floating add and a floating multiply can all be
initiated in a single clock period.

A single node of the Touchstone Gamma system
consists of the i860, 8 megabytes (MB) of dynamic
random access memory, and hardware for commu-
nication to other nodes. The Touchstone Gamma
system at NASA Ames consists of 128 computa-
tional nodes. The theoretical peak performance of
this system is thus approximately 7.5 GFLOPS on
64 bit data.

The 128 nodes are arranged in a seven dimen-
sional hypercube using the direct connect routing
module and the hypercube interconnect technol-
ogy of the iPSC/2. The point to point aggregate
bandwidth of the interconnect system, which is 2.8
MB/sec per channel, is the same as on the iPSC/2.
However the latency for the message passing is re-
duced from about 350 microseconds to about 90
microseconds. This reduction is mainly obtained
through the increased speed of the i860 on the
Touchstone Gamma machine, when compared to

1



the Intel 386/387 on the iPSC/2. The improved la-
tency is thus mainly a product of faster execution
of the message passing software on the i860.

Attached to the 128 computational nodes of the
NASA Ames system are ten I/O nodes, each of
which can store approximately 700 MB. The to-
tal capacity of the I/O system is thus about 7
GB. These I/O nodes operate concurrently for high
throughput rates. The complete system is con-
trolled by a system resource module (SRM), which
is based on an Intel 80386 processor. This sys-
tem handles compilation and linking of source pro-
grams, as well as loading the executable code into
the hypercube nodes and initiating execution. At
present the SRM is a serious bottleneck in the sys-
tem, due to its slowness in compiling and link-
ing user codes. For example, the compilation of a
moderate-sized application program often requires
30 minutes or more, even with no optimization op-
tions and no other users on the system.

The software environment of the Touchstone
Gamma system is similar to that of the iPSC/2.
The SRM runs Unix System V/386 and features the
usual networking facilities including support for the
Network File System. Also available is remote host
software that allows a user to use the system trans-
parently from a workstation, although the compila-
tions and other operations are actually performed
on the SRM. The individual nodes run a simplified
Unix-like kernel. Fortran-77 and C compilers, as
well as an assembler and linker, are provided on
the SRM. The system supports standard message
passing commands for control of multiple processor
execution.

Single Node Performance
The Fortran compiler (produced by Green Hills)

that is provided on the initial Touchstone Gamma
system is the pre-production release 3.2. Although
it has some scalar optimization options, it does
not yet take advantage of advanced features of the
i860 such as the pipelining of floating point op-
erations and the utilization of multiple functional
units. As a result, single node Fortran performance
is not outstanding at the present time. However,
it is clear that improved performance can be ex-
pected in the future as more advanced compilers
are made available. This compiler development is
stimulated in part by the potential usage of the i860

Program Error Time MFLOPS
MXM 3.43E-15 3.106 1.35
CFFT2D 1.26E-13 4.029 1.24
CHOLSKY 2.90E-12 1.737 0.64
BTRIX 5.53E-13 10.889 1.48
GMTRY 8.63E-14 138.550 0.82
EMIT 1.48E-16 7.909 2.86
VPENTA 1.19E-14 0.550 1.18
TOTAL 3.68E-12 166.770 0.98

Table 1: Single Node NAS Kernel Performance

in high performance workstations and in other sys-
tems that are unrelated to the Touchstone project.

Some results of tests using the NAS Kernel
Benchmark Program are shown in Table 1. This
benchmark assesses the performance of a computer
on seven subroutines that are typical of computa-
tional fluid dynamics computations done at NASA
Ames [2]. The overall single node performance fig-
ure of 0.98 MFLOPS (64 bit), which is only about
1.6% of the theoretical peak performance of the
i860 on 64 bit data, indicates there is considerable
room for improvement in the compiler’s effective-
ness on this benchmark. These figures were ob-
tained by compiling with no optimization. When
compiled with all optimizations enabled (-OLM),
the first three figures increased to 5.39 MFLOPS,
3.77 MFLOPS, and 1.71 MFLOPS, respectively,
but the remaining tests did not complete, most
likely due to a bug in the compiler. By compar-
ison, the overall single node performance figure on
the Cray Y-MP for this benchmark is 97 MFLOPS
with no tuning and 160 MFLOPS with minor tun-
ing.

Performance results for some simple Fortran
loops (see Table 2) on a single node of the Touch-
stone Gamma system are shown in Table 3. For
comparison, performance figures are shown on
these same loops for several other systems as well.
The Silicon Graphics (SGI) 4D-25 system included
in the list employs the MIPS R3000 processor.

Additional insight into single node performance
is provided by results for two simplified applica-
tion programs, which are shown in Table 4. The
first program (RELAX) performs a four color cell
relaxation scheme for the solution of the Cauchy-
Riemann equations. The second program (ADI)



Loop No. Operation
1 ai = αbi

2 ai = bici

3 ai = α(bi + ci)
4 ai = bi(ci + di)
5 ai = αbi + βci

6 ai = αbi + cidi

7 ai = bici + diei

8 ai = αbi + βci + γdi

9 ai = αbi + βci + γdi + δei

Table 2: Basic Operations

Vector Touch- SGI Cray Cray
length stone 4D-25 2 Y-MP

64 3.5 0.8 86.3 187.4
128 3.6 0.8 91.0 187.4
256 3.8 0.8 97.7 197.1
512 3.9 0.8 112.9 199.5

Average 3.7 0.8 97.0 192.8
Best 7.7 1.4 209.9 247.8

Worst 0.9 0.5 38.3 102.5

Table 3: Basic Operations Performance on a Single
Processor of Various Systems (MFLOPS)

Domain Touch- SGI Cray Cray
size stone 4D-25 2 Y-MP

RELAX
64× 64 6.4 2.6 109.6 177.6

128× 128 6.4 2.5 112.9 190.1
256× 256 5.9 2.5 115.2 190.6

ADI
64× 64 3.4 2.0 85.6 130.8

128× 128 3.1 1.9 88.9 135.2
256× 256 2.2 1.4 95.2 136.5

Table 4: Performance of Two Codes on Single
Processor of Various Systems

performs the ADI scheme for the solution of the
diffusion equation. Results are listed for compar-
ison on several different single processor systems.
All of these results are for 64 bit data.

Some indication of the potential for single node
performance is given by the results of the LIN-
PACK benchmark. Using all Fortran, 40 MHz i860
nodes, and no optimization, the performance is 2.6
MFLOPS for 64 bit data. With all three opti-
mization options enabled (-OLM) this figure rises
to 4.5 MFLOPS. Corresponding figures for 32 bit
data are 2.7 MFLOPS and 5.3 MFLOPS, respec-
tively. When an assembly coded DAXPY routine
is employed in the inner loop, 8.8 MFLOPS is ob-
tained on 64 bit data. Somewhat higher perfor-
mance could be expected by utilizing assembly code
for other routines, such as ISAMAX.

The effect of the cache size and the limited band-
width between the i860 and main memory can be
seen by some results of a double precision dot prod-
uct coded three different ways, as shown in Figure
1. The top two curves are assembly coded where
one vector is loaded from cache and the other from
main memory. Curve three is also assembly coded
but bypasses cache and loads both vectors from
main memory. The fourth curve is a Fortran coded
dot product compiled with full optimization.

When one vector is loaded from cache (i.e. the
top two curves), the dot product peaks at about 27
MFLOPS. As the vector length exceeds the cache
size (8 KB = 1000 words), performance drops off
dramatically. With a stride of two, only half of the
data in cache is usable and so performance drops
off when the vector length exceeds 512 words. The
Fortran coded dot product also shows the effect of
cache and peaks at 8.7 MFLOPS.

Curve three is the assembly coded version that
bypasses cache. It remains flat after an initial
startup and runs about 13 MFLOPS independent
of vector length. In fact, it is the fastest dot prod-
uct for vectors longer than 1500.

From the above results, it is clear that while the
single node Fortran performance of the Touchstone
Gamma system is much higher than on previous
Intel hypercube systems, it still lags far behind the
ultimate potential of the i860 system. Certainly
there is much work to be done on the Fortran com-
piler to enable it to effectively utilize the advanced
features of the i860. The LINPACK benchmark re-



sults, for example, suggest that speedups of a factor
of two or three should be possible by fairly straight-
forward compiler enhancements.

However, even when these compiler enhance-
ments have been implemented, the limited main
memory bandwidth and cache structure of the in-
dividual nodes will continue to pose a challenge
for those wishing to approach peak performance on
i860 systems. For example, the 8.8 MFLOPS fig-
ure for the 64 bit LINPACK benchmark using an
assembly-coded DAXPY is still only about 15% of
the peak. To obtain significantly higher results on
a given calculation, it will be necessary to improve
data locality by better utilizing the registers and
cache and by minimizing accesses of data in main
memory.

It is possible that compiler technology will even-
tually be sophisticated enough to automatically
block calculations so as to maximize data locality
and thus boost the performance of some loops on
systems such as the i860. Indeed, some research
groups are now working on such compiler technol-
ogy. In the near future, however, the only practical
way for users of i860 systems to obtain large frac-
tions of the peak performance will be to restructure
computations with algorithms that better preserve
data locality. For many applications, it may not be
possible to restructure computations in this man-
ner. In these cases at most 10 MFLOPS or so can
be expected on a single node.

An example of the potential for higher perfor-
mance to be had by restructuring a calculation for
improved data locality is indicated by some work in
progress at NASA Ames by one of the authors (Bai-
ley) and Paul Frederickson of RIACS. They are de-
veloping a high-performance fast Fourier transform
(FFT) routine for the Touchstone Gamma system.
In some initial i860 FFT efforts by others, per-
formance rates as high as 40 MFLOPS have been
obtained for an unordered (bit reversed), 32 bit,
small-sized FFT, but the rate for data sizes larger
than the cache drops to only about 10 MFLOPS.
The rates for ordered results or for 64 bit data
are even lower. Although the NASA Ames work
is at present incomplete, preliminary results indi-
cate that by employing an advanced FFT algorithm
that preserves data locality [1], performance rates
of approximately 40 MFLOPS can be sustained on
an ordered 64 bit FFT of any size up to the 8 MB

Length Distance = 1 Distance = 7
Length Time Rate Time Rate
(words) (sec) (MB/s) (sec) (MB/s)

1 9.00E-5 0.089 3.30E-4 0.024
2 9.00E-5 0.178 3.30E-4 0.048
4 9.00E-5 0.356 3.30E-4 0.097
8 1.00E-4 0.640 3.30E-4 0.194

16 2.30E-4 0.557 4.60E-4 0.278
32 2.80E-4 0.914 4.60E-4 0.557
64 3.90E-4 1.313 5.80E-4 0.883

128 5.50E-4 1.862 7.80E-4 1.313
256 9.40E-4 2.179 1.16E-3 1.766
512 1.67E-3 2.453 1.88E-3 2.179

1024 3.13E-3 2.617 3.33E-3 2.460
2048 6.05E-3 2.708 6.26E-3 2.617
4096 1.19E-2 2.751 1.21E-2 2.704
8192 2.36E-2 2.776 2.38E-2 2.750

16384 4.70E-2 2.788 4.72E-2 2.775
32768 9.38E-2 2.794 9.41E-2 2.787
65536 1.88E-1 2.797 1.88E-1 2.794

131072 3.75E-1 2.798 3.75E-1 2.797

Table 5: Communication Performance

main memory capacity. It is hoped that about
three GFLOPS can be obtained by using all 128
processors.

Communication System Performance
As mentioned earlier, the routing network of the

Touchstone Gamma system is identical to the rout-
ing network of the Intel iPSC/2. The main differ-
ence between the two machines is the lower latency
in the Touchstone Gamma system, due to the faster
i860 processor.

To measure the communications latency of this
system, the time for passing a message between
two nodes has been measured for various message
lengths. In these experiments, no other communi-
cations or computations were performed. The re-
sulting figures are given in Table 5. In this table,
the message length is the number of eight byte (64
bit) words, and the rate is listed in megabytes per
second.

The times in the table are averages over one hun-
dred repetitions. Figures 2 and 3 show this infor-
mation graphically. These results show that even in
a 128 node cube there is very little difference in the



Computer Length Latency Time/word
System (bytes) (µ sec) (µ sec)
iPSC/2 < 100 350 1.60

> 100 660 2.88
Touchstone < 100 90 1.50

> 100 180 2.88

Table 6: Linear Regression Messing Passing Para-
meters

actual message passing time between nearest neigh-
bor and maximum distance communication in the
hypercube.

Figure 4 shows a close up of the communication
times for short messages. Just like on the iPSC/2,
messages of length less than 100 bytes are sent
immediately, whereas for longer messages (> 100
bytes) the node operating system first checks for
the availability of memory at the receiving end.

Following Bomans and Roose [3] we model the
communication time Tcomm by a least squares fit of
the data according to the model

Tcomm(k) = tstartup + k ∗ tsend

where k is the number of 8 byte words, tstartup is the
latency and tsend is the time per word. We obtain
the data in Table 6 (the iPSC/2 numbers are from
[3]). Thus we are able to confirm a considerably
reduced message passing latency, which is obtained
mainly from the increased speed of the i860 on the
Touchstone Gamma system, when compared to the
Intel 386/387 on the iPSC/2.

The message passing behavior on a real appli-
cation is considerably more difficult to assess. As
an example we present the test results in Table 7,
which were obtained when timing two neighboring
nodes (distance = 1) exchanging messages. The
numbers in this table are displayed graphically in
Figure 5. After an initial increase in communica-
tion speed the speed drops off again. This can be
explained as follows: as soon as the messages reach
a certain length, both nodes start receiving the in-
coming message, even though they have not yet
completed sending the outgoing message. Hence,
as soon as both nodes starting processing two com-
munication requests simultaneously, the communi-
cation speed begins to drop off.

Length Time Rate
(8B wds) (sec) (MB/s)

1 1.40E-4 0.057
2 1.40E-4 0.114
4 1.40E-4 0.229
8 1.50E-4 0.427

16 3.40E-4 0.376
32 3.20E-4 0.800
64 5.10E-4 1.004

128 6.30E-4 1.625
256 1.47E-3 1.393
512 1.74E-3 2.354

1024 3.20E-3 2.560
2048 6.14E-3 2.668
4096 1.69E-2 1.937
8192 4.36E-2 1.502

16384 8.93E-2 1.468
32768 1.56E-1 1.683
65536 3.52E-1 1.488

131072 6.67E-1 1.572

Table 7: Neighboring Node Message Passing Per-
formance

Multiprocessor Application Performance
In this section, we will discuss and analyze the

performance of two computational fluid dynamics
(CFD) application programs that have been ported
to the Touchstone Gamma system at NASA Ames.

The first application is an iterative solution of
linear systems arising from the finite difference dis-
cretization of a 2-D and 3-D self-adjoint elliptic
partial differential equations on regular grids. This
problem can be cast into the matrix-vector form
Ax = b, where the regular sparse, symmetric, posi-
tive definite matrix A takes the place of the differ-
ential operator.

The implementation of this problem on the
Touchstone Gamma system consists of decompos-
ing the tensor product computational domain into
logically congruent rectangles and mapping these
subdomains onto the network of processors. The
mappings are chosen so that subdomains sharing
common edges are assigned to processors that are
directly connected in the hypercube network. This
requires, for stripwise decompositions, a binary re-
flected Gray code (BRGC) ring and for rectangu-
lar decompositions, a BRGC 2-D mesh embedded



in a hypercube. Decomposition in this manner re-
sults in homogeneous programming of the proces-
sors, equidistribution of the load, minimization of
the distance traveled by messages and simplified
communication patterns for data exchange between
processors.

Two essentially different types of data exchanges
are required when these concurrent algorithms are
implemented via domain decomposition. For five
and nine point second order finite difference sten-
cils, stripwise decomposition requires two vector
exchanges of internal boundary data per proces-
sor per iteration and rectangular decomposition re-
quires four such exchanges. In addition to these
pairwise exchanges between processors working on
adjacent subdomains, global exchanges are re-
quired for reduction operations such as inner prod-
ucts and maximums. These global communication
operations are implemented via calls to a high level
system library provided by Intel [5]. Routines in
this library implement reduction operations using
the e-cube routing algorithm, which requires only
log2 p concurrent nearest neighbor communication
steps, at the end of which all the processors belong-
ing to the active subcube have the required global
value.

The Jacobi preconditioned conjugate gradient
method, multicolor SOR and SSOR preconditioned
conjugate gradient method for 2-D self-adjoint el-
liptic PDE’s have been implemented on the 128
processor Touchstone Gamma system. These
implementations are entirely in Fortran, using
the standard message passing and synchronization
commands. Results of these implementations are
presented in Figure 6 and Tables 8 and 9. The lines
with percentages give parallel efficiencies, i.e. the
ratio of multiprocessor performance to the single
node performance.

One especially curious aspect of this performance
data is that in some cases, the parallel efficiency
figure is greater than 100%. This is due to the fact
that when a problem of fixed size is divided among
processors, the memory size in each processor is
reduced, resulting in increased cache efficiency.

The 2-D model problem chosen is the Poisson
equation:

∂2u

∂x2
+

∂2u

∂y2
= f(x, y)

Problem Number of Processors
Size 1 4 16 64 128
512× 512 4.5 20.8 76.3 237.8 362.4

117% 107% 83% 63%
1024× 1024 17.7 80.2 299.1 524.2

99% 112% 105% 92%
2048× 2048 69.6 320.4 628.5

97% 112% 110%
4096× 4096 277.8 650.8

97% 114%
8192× 4096 554.7

97%

Table 8: 2-D Red-Black SOR (MFLOPS)

on a unit square with homogeneous Dirichlet
boundary conditions, where f(x, y) is chosen so
that the exact solution is u(x, y) = cxx2 + cyy

2.
The initial iterate is u = 0 and an absolute con-
vergence tolerance of 10−6 on the L2-norm of the
scaled residual is used. A five point second order
accurate finite difference stencil is used for the dis-
cretization of the PDE.

Results for a 2-D model with mixed derivatives
are presented in Table 10. The mixed derivative
problem is

∂2u

∂x2
+

∂2u

∂y2
+ β

∂2u

∂x∂y
= f(x, y)

This problem requires a nine point stencil for sec-
ond order accurate finite difference discretization.
In addition, performance data is presented in Ta-
ble 11 for the solution of 3-D Poisson equation using
Jacobi preconditioned conjugate gradient method.

The efficient implementation of iterative meth-
ods on message passing machines requires that the
effects of communication delays be minimized. One
way of achieving this is to restructure algorithms in
such a way so as to overlap communication with
computation. This is effected by first updating
the u values along the boundaries of the subdo-
mains and then using non-blocking message pass-
ing primitives to exchange data between adjacent
subdomains before returning to continue with com-
putation in the interior of the subdomains. Com-
putations requiring the internal boundary values
received from adjacent subdomains are delayed un-
til all internal nodes are dealt with.



Problem Number of Processors
Size 1 4 16 64 128
256× 256 5.4 21.2 64.1 138.6 180.0

97% 73% 40% 26%
512× 512 21.3 79.9 245.8 365.2

98% 92% 71% 52%
1024× 1024 83.0 312.3 548.3

95% 90% 79%
2048× 2048 329.5 652.5

95% 94%
4096× 2048 658.5

94%

Table 9: 2-D SSOR PCG (MFLOPS)

Problem Number of Processors
Size 1 4 16 64 128
256× 256 6.7 26.3 92.3 228.9 294.1

98% 86% 53% 34%
512× 512 26.7 104.4 348.8 577.0

99% 97% 81% 67%
1024× 1024 106.0 412.0 774.8

98% 96% 90%
2048× 2048 423.0 832.5

98% 97%
2048× 4096 844.0

98%

Table 10: 2-D Jacobi PCG with Mixed Derivatives
(MFLOPS)

Problem Number of Processors
Size 1 8 64 128
48× 48× 48 5.3 37.2 186.5 252.4

88% 55% 37%
96× 96× 96 41.0 276.6 481.2

97% 82% 71%
192× 192× 192 316.2 588.9

93% 87%
192× 192× 384 633.9

97%

Table 11: 3-D Jacobi PCG (MFLOPS)

The second multiprocessor application to be dis-
cussed is the NASA Ames code ARC2D. This ver-
sion of ARC2D solves 2-D Euler equations based on
the diagonal form of the Beam and Warming im-
plicit approximate factorization algorithm [6] and is
capable of treating general 2-D geometries in either
time accurate mode or accelerated non-time accu-
rate steady state mode. Implicit time integration
techniques impose less stringent stability bounds
and consequently permit efficient solution of prac-
tical fluid dynamics applications that require fine
grid spacing. However, implicit schemes require
global communication, and thus the performance
suffers from increased data movement.

The 2-D Euler equations written in generalized
curvilinear coordinates are:

∂Q

∂τ
+

∂E

∂ξ
+

∂F

∂η
= 0

where

Q = J−1




ρ
ρu
ρv
e




E = J−1




ρU
ρuU + ξxp
ρvU + ξyp

U(e + p)− ξtp




F = J−1




ρV
ρuV + ηxp
ρvV + ηyp

V (e + p)− ηtp




with U = ξt + ξxu + ξyv and V = ηt + ηxu + ηyv as
the contravariant velocity components and where
τ = t, ξ = ξ(x, y, t), η = η(x, y, t) is the trans-
formation from cartesian coordinates (x, y) to gen-
eral curvilinear coordinates (ξ, η). This numeri-
cally generated coordinate transformation is chosen
so as to produce a rectangular domain in compu-
tational space with uniform grid spacing of unit
length. Here, ρ is the fluid density, u, v are the
cartesian components of velocity, e and p are the
total energy and pressure, respectively.

Although time differencing can be either first or
second order accurate, only the former is required
if steady state solutions are of interest. The first
order accurate implicit time differencing of the 2-D



Euler equations results in

Qn+1 −Qn + ∆t(
∂En+1

∂ξ
+

∂Fn+1

∂η
) = 0

where the flux vectors E and F are nonlinear func-
tions of Qn+1. The nonlinear terms are linearized
in time about Qn using the first two terms of the
Taylor series:

En+1 = En + An∆Qn + O(∆t2)
Fn+1 = Fn + Bn∆Qn + O(∆t2)

where A = ∂E/∂Q and B = ∂F/∂Q.
Substituting these expressions in the previous

equation, we obtain the delta form of the unfac-
tored algorithm:

[
I + ∆t

∂An

∂ξ
+ ∆t

∂Bn

∂η

]
∆Qn

= −∆t

[
∂En

∂ξ
+

∂Fn

∂η

]

To simplify the solution process, the unfactored Ja-
cobian matrix is replaced by two one-dimensional
operators through approximate factorization:

[
I + ∆t

∂An

∂ξ

] [
I + ∆t

∂Bn

∂η

]
∆Qn

= −∆t

[
∂En

∂ξ
+

∂Fn

∂η

]

To further improve the computational efficiency
of the numerical scheme, the two block implicit op-
erators are diagonalized, based on the eigensytem
of the flux Jacobians A and B, through the follow-
ing similarity transformations Λξ = T−1

ξ ATξ and
Λη = T−1

η BTη where Tξ and Tη are matrices whose
columns are the eigenvectors of A and B respec-
tively. Substituting for A and B in the above, fol-
lowed by some simplification, we get

Tξ[I + ∆tδξΛξ]N [I + ∆tδηΛη]T−1
η ∆Qn+1

= Rn

where Rn = −∆t[δξE
n + δηF

n] and N = T−1
ξ Tη.

The diagonalization produces scalar tridiagonal
or pentadiagonal and block diagonal inversions in
place of block tridiagonal or pentadiagonal inver-
sions, without sacrificing the accuracy of the steady
state solution.

In order to overcome the numerical instability
due to nonlinear interactions, artificial dissipation

terms are added to the implicit scheme [6]. The
right hand side vector Rn consists of the contribu-
tions from the nonlinear flux derivatives in ξ and
η directions and the artificial dissipation terms, all
of which are evaluated using second order accurate
central differences. The discretized equations in the
interior of the computational domain are supple-
mented by boundary conditions derived from the
characteristic approach, which are applied explic-
itly.

In summary, the diagonal form of the implicit
factored algorithm consists of first forming the right
hand side Rn, then performing a block diagonal in-
version involving Tξ, followed by four scalar pen-
tadiagonal inversions for ξ direction sweep. This is
followed by another block diagonal inversion involv-
ing N , four scalar pentadiagonal inversions for η
direction sweep and a block diagonal matrix-vector
product involving Tη, with resultant vector contain-
ing the solution update.

The concurrent implementation of the ARC2D
algorithm is achieved by stripwise decomposition
of the rectangular computational domain in the
η direction, followed by mapping of the resultant
subdomains onto a BRGC ring embedded in the
hypercube. As a consequence of this particular
subdomain to processor mapping, each of the mul-
tiple, independent pentadiagonal system encoun-
tered during the ξ direction sweeps is local to the in-
dividual processors, and is amenable to solution by
Gaussian elimination without pivoting, with no in-
terprocessor communication. The rows of the pen-
tadiagonal systems encountered during the η direc-
tion sweeps are distributed across the processors
embedded in the ring. A data transpose operation,
involving heavy interprocessor communication, is
performed prior to Gaussian elimination step to
gather complete systems onto individual proces-
sors.

The resultant solution vectors are scattered
across the processor ensemble through a reverse
transpose operation, again involving substantial in-
terprocessor communication. The block diagonal
inversions and matrix-vector product encountered
in the diagonal implicit factored algorithm are com-
puted without incurring any interprocessor com-
munication costs. Computation of the right hand
side vectors requires only pairwise exchanges be-
tween processors working on adjacent subdomains.



Problem Number of Processors
Size 1 2 4 8 16 32
192× 64 2.9 5.3 8.5 12.7 16.8

92% 74% 55% 36%
256× 80 5.5 9.2 16.1 19.6

94% 79% 61% 42%
320× 128 9.9 16.8 25.5 33.8

85% 72% 55% 36%

Table 12: ARC2D Performance (MFLOPS)

Global exchanges are required for computing the 2-
norm of the residual of the continuity equation and
the number of supersonic points in the flow field,
which are used to monitor convergence.

The performance of the resulting implementation
is summarized in Table 12. These results are not
nearly as high as the previous results, for two rea-
sons. First of all, the single node performance is
lower, due to inefficient compilation of the most im-
portant inner computational loops. Secondly, the
transpose step mentioned above is at present very
expensive in communication, with the result that
multiprocessor efficiencies are quite low. There is
at this time some hope that the communication effi-
ciency can be improved by restructuring the trans-
pose procedure. Improvements in single node per-
formance will have to await enhancements in the
Fortran compiler.

Conclusion
With the Intel Touchstone Gamma system,

multi-GFLOPS peak floating point performance is
now available on a MIMD hypercube computer sys-
tem. Initial performance results indicate that a sig-
nificant fraction of this peak performance may be
obtained on some specialized applications, partic-
ularly those that can be implemented with algo-
rithms and techniques that possess a high degree
of data locality. For the larger class of applications
that do not possess high degrees of data locality,
performance rates will be limited by both the re-
stricted bandwidth between the processor and main
memory on the individual nodes and by the re-
stricted communication bandwidth between nodes.
For both classes of applications, performance rates
for the time being are lower than ideal due to an
immature Fortran compiler. The usability of the

system for serious computation is also at present
hampered by a slow front-end system (the SRM),
which results in tedious delays for compiling and
linking user programs.

On the other hand, such limitations are typical of
an early prototype system. Hopefully future devel-
opments, both hardware and software, will alleviate
some of these bottlenecks and permit broad classes
of scientific computations to run at multi-GFLOPS
speeds.

Acknowledgment
The authors acknowledge the valuable informa-

tion and assistance provided by Paul Frederickson
of RIACS, David Scott of Intel Scientific Comput-
ers, and Leigh Ann Tanner of NAS.

References

1. Bailey, D. H., “FFTs in External or Hierarchi-
cal Memory”, Journal of Supercomputing, vol.
4 (1990), p. 23 - 35.

2. Bailey, D. H., and Barton, J. T., “The NAS
Kernel Benchmark Program”, NASA Techni-
cal Memorandum 86711 (August 1985).

3. Bomans, L. and Roose, D., “Benchmarking the
iPSC/2 Hypercube Multiprocessor”, Concur-
rency, vol. 1 (1989), p. 3 - 18.

4. i860 64-Bit Microprocessor Programmer’s Ref-
erence Manual, Intel Corporation, Santa
Clara, CA, 1990.

5. iPSC/2 User’s Guide, Intel Scientific Co.,
Beaverton, OR, 1989.

6. Pulliam, T. H., “Efficient Solution Methods for
the Navier-Stokes Equations”, Lecture Notes
for The Von Karman Institute for Fluid Dy-
namics Lecture Series, Jan. 20 - 24, 1986.



0 500 1000 1500 2000

Vector Length

0

5

10

15

20

25

30

M
FL

O
PS

Cache Stride 1
Cache Stride 2
No Cache Stride 1
Fortran Optimized

Figure 1: Double Precision Dot Product

0 1 2 3 4 5 610 10 10 10 10 10 10

Message Length (64 bit words)

0

1

2

3

M
by

te
s/

se
c

Distance 1
Distance 7

Figure 2: Node to Node Communication

0 1 2 3 4 5 610 10 10 10 10 10 10

Message Length (64 bit words)

-5

-4

-3

-2

-1

0

1

10

10

10

10

10

10

10

se
co

nd
s

Distance 1
Distance 7

Figure 3: Long Distance Communication

0 20 40 60 80

Message Length (64 bit words)

1.0E-4

2.0E-4

3.0E-4

4.0E-4

5.0E-4

6.0E-4

7.0E-4

8.0E-4

se
co

nd
s

Distance 1
Distance 7

Figure 4: Short Message Communication

0 1 2 3 4 5 610 10 10 10 10 10 10

Message Length (64 bit words)

0

1

2

3

M
by

te
s/

se
c

Figure 5: Nearest Neighbor Communication

1 2 4 8 16 32 64 128

Number of Processors

1

2

4

8

16

32

64

128

Sp
ee

du
p

256x256 Grid
360x360 Grid
512x512 Grid
720x720 Grid
1024x1024 Grid
Ideal
Ideal
Ideal
Ideal
Ideal

Figure 6: Speedup for 2-D Jacobi PCG Code


